作为因果科学家的神经系统:因果编码
导语
为什么人类能思考“为什么”?这一个颇具哲学意味的追问一直是神经科学和物理学的研究前沿。在1月12日发表于 Physical Review E 的一项研究中,清华大学心理学系&脑与智能实验室的研究团队发现神经元群的集群动力学可以自发完成对因果关系的近同态的表征,且几乎不依赖因果关系判定中历史信息的数量。
田洋 | 作者
邓一雪 | 编辑
1. 因果编码研究:进展与挑战
论文标题: Characteristics of the neural coding of causality 论文地址: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.012406
2. 基础的因果编码——从神经元动力学开始
3. 基础的因果编码:
神经动力学对因果的表征
4. 总结
参考文献
[1] A. Pouget, J. M. Beck,W. J.Ma, and P. E. Latham, Probabilistic brains: Knowns and unknowns, Nat. Neurosci. 16, 1170 (2013).
[2] C. Chandrasekaran, Computational principles and models of multisensory integration, Curr. Opin. Neurobiol. 43, 25 (2017).
[3] J. K. Bizley, G. P. Jones, and S. M. Town, Where are multisensory signals combined for perceptual decision-making? Curr. Opin. Neurobiol. 40, 31 (2016).
[4] L. Shams and U. R. Beierholm, Causal inference in perception, Trends Cognit. Sci. 14, 425 (2010).
[5] M. O. Ernst and H. H. Bülthoff, Merging the senses into a robust percept, Trends Cognit. Sci. 8, 162 (2004).
[6] L. Shams and A. R. Seitz, Benefits of multisensory learning, Trends Cognit. Sci. 12, 411 (2008).
[7] B. J. Scholl and P. D. Tremoulet, Perceptual causality and animacy, Trends Cognit. Sci. 4, 299 (2000).
[8] E. Goldvarg and P. N. Johnson-Laird, Naive causality: A mental model theory of causal meaning and reasoning, Cognit. Sci. 25, 565 (2001).
[9] W. J. Ma and M. Rahmati, Towards a neural implementation of causal inference in cue combination, Multisensory Res. 26, 159 (2013).
[10] Y. Fang, Z. Yu, J. K. Liu, and F. Chen, A unified neural circuit of causal inference and multisensory integration, Neurocomputing 358, 355 (2019).
[11] C. Cuppini, L. Shams, E. Magosso, and M. Ursino, A biologically inspired neurocomputational model for audiovisual integration and causal inference, Eur. J. Neurosci. 46, 2481 (2017).
[12] M. Ursino, A. Crisafulli, G. Di Pellegrino, E. Magosso, and C. Cuppini, Development of a Bayesian estimator for audiovisual integration: A neurocomputational study, Front. Comput. Neurosci. 11, 89 (2017).
[13] M. Ursino, C. Cuppini, and E. Magosso,Multisensory Bayesian inference depends on synapse maturation during training: Theoretical analysis and neural modeling implementation, Neural Comput. 29, 735 (2017).
[14] A. Arnold, Y. Liu, and N. Abe, Temporal causal modeling with graphical Granger methods, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2007), pp. 66–75.
[15] H. Liu, J. Lafferty, and L. Wasserman, The nonparanormal: Semiparametric estimation of high dimensional undirected graphs, J. Mach. Learn. Res. 10, 2296 (2009).
[16] T. Schreiber, Measuring Information Transfer, Phys. Rev. Lett. 85, 461 (2000).
[17] A. Michotte, The Perception of Causality, Psychology Library Editions: Perception, Vol. 21 (Routledge, Abingdon, England, 2017).
[18] K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics Vol. 799 (Springer, Heidelberg, 2010).
[19] U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).
[20] J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys. 48, 571 (1976).
[21] D. Andrieux and P. Gaspard, Fluctuation theorem for currents and Schnakenberg network theory, J. Stat. Phys. 127, 107 (2007). [22] R. B. Schwarz and A. G. Khachaturyan, Thermodynamics of Open Two-Phase Systems with Coherent Interfaces, Phys. Rev. Lett. 74, 2523 (1995).
[23] E. Kuhl and P. Steinmann, Mass- and volume-specific views on thermodynamics for open systems, Proc. R. Soc. London, Ser. A 459, 2547 (2003).
[24] P. Talkner and P. Hänggi, Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical, Rev. Mod. Phys. 92, 041002 (2020).
[25] M. Campisi, P. Talkner, and P. Hänggi, Thermodynamics and fluctuation theorems for a strongly coupled open quantum system: An exactly solvable case, J. Phys. A: Math. Theor. 42, 392002 (2009).
[26] A. Katchalsky and O. Kedem, Thermodynamics of flow processes in biological systems, Biophys. J. 2, 53 (1962).
[27] H. Qian and T. C. Reluga, Nonequilibrium Thermodynamics and Nonlinear Kinetics in a Cellular Signaling Switch, Phys. Rev. Lett. 94, 028101 (2005).
[28] D. T. Haynie, Biological Thermodynamics (Cambridge University, Cambridge, England, 2001).
课程介绍:如何将因果推理与机器学习相结合,开发可解释人工智能(XAI)算法,是迈向人工智能2.0的关键步骤之一。为此,我们希望可以通过因果科学专题读书会,研读相关论文,来试图找到回答上述问题的答案。本系列课是读书会的录播。
课程地址:
https://campus.swarma.org/course/1798
复杂科学最新论文
集智斑图顶刊论文速递栏目上线以来,持续收录来自Nature、Science等顶刊的最新论文,追踪复杂系统、网络科学、计算社会科学等领域的前沿进展。现在正式推出订阅功能,每周通过微信服务号「集智斑图」推送论文信息。扫描下方二维码即可一键订阅:
推荐阅读
点击“阅读原文”,追踪复杂科学顶刊论文